Racket Programming Assignment #3: Lambda and Basic Lisp

What’s It All About?

The first two tasks are highly constrained. One of these pertains to lambda functions, and the other to basic list
processing operations in Lisp. The second two tasks, which are considerably more involved, ask you to extend pro-
grams that are presented in Lesson 6 “Basic Lisp Programming”. These two tasks will afford you enough freedom
to make some mistakes along the way, and to see opportunities to revise your code to make it better, even after you
get your programs to do what they are supposed to do.

Task 1 - Lambda

Task 1la - Three ascending integers

Consider the following demo:

> (asc 5)
’(5 6 7)

> (asc 0)
(01 2)

> (asc 108)
> (108 109 110)
>

Your job is to generate this exact demo, except that you must replace the call to the asc function in each of the
three applications with a lambda function. Note that the Definitions area will not come into play in this exercise,
nor will you create any named functions. Your demo will simply feature three anonymous function applications, the
first with argument 5, the second with argument 0, and the third with argument 108.

Task 1b - Make list in reverse order

Consider the following demo:

> (mlr ’red ’yellow ’blue)

> (blue yellow red)

> (mlr 10 20 30)

> (30 20 10)

> (mlr "Professor Plum" "Colonel Mustard" "Miss Scarlet")
>("Miss Scarlet" "Colonel Mustard" "Professor Plum")

Your job is to generate this exact demo, except that you must replace the call to the mlr function in each of the
three applications with a lambda function. Note that the Definitions area will not come into play in this exercise,
nor will you create any named functions. Your demo will simply feature three anonymous function applications, each
using the same three arguments that I used in the given demo.

Task 1c - Random number generator

Consider the following demo:

(rn35)

rn 35)

vV WYV OlV WV WVdedV WV OolV orlVvwyVv oyv
~

> (rn 11 17)

> (rn 11 17)

> (rn 11 17)

> (rn 11 17)

> (rn 11 17)

> (rn 11 17)

> (rn 11 17)

> (rn 11 17)

> (rn 11 17)

Your job is to generate demo like this one, except that you must replace the call to the rn function in each of the
three applications with a lambda function. Note that the Definitions area will not come into play in this exercise,
nor will you create any named functions. Your demo will simply feature ten anonymous function applications with
arguments 3 and 5, and ten anonymous function applications with arguments 11 and 17.

Task 2 - List Processing Referencers and Constructors

Simply create the demo, for real, that is presented in redacted form in Lesson 6 “Basic Lisp Programming”, in the
section titled “Redacted Racket Session Featuring Referencers and Constructors”.

Task 3 - Little Color Interpreter

This task invites you to extend a very simple interpreter into a slightly less simple interpreter.

Task 3a - Establishing the Sampler code from Lesson 6

1. In a file called sampler.rkt, establish the “sampler” program that can be found in the penultimate section of
Lesson 6.

2. Generate a demo by mimicking the demo which accompanies the “sampler” program in Lesson 6.

Task 3b - Color Thing Interpreter

1. In a file called color_thing.rkt, copy and paste the code from the sampler.rkt file. In the two obvious
places, change sampler to color_thing. Then run the program, just to make sure that everything still works.

2. Change/extend the program so that it will interpret three commands, each of which takes the form of a list
of length 2, as suggested in the accompanying demo. You needn’t do error checking for this program. Simply
assume that the user capably types in a list of length two when required, the first element of which is either
random, or all, or an integer between 1 and the length of the second parameter, which will always be a list
of color names that the Racket 2htdp/image library recognizes. Constraint: No iterative constructs are
allowed.

3. Create a demo that is just like the accompanying demo, except for the randomness bits.

4. Create another demo, a similar demo, but with different colors than in the accompanying demo. You can find
a list of colors known to Racket at:
https://docs.racket-lang.org/draw/color-database___.html

The accompanying demo:

> (color-thing)
? (random (olivedrab dodgerblue indigo plum teal darkorange))

? (random (olivedrab dodgerblue indigo plum teal darkorange))

? (random (olivedrab dodgerblue indigo plum teal darkorange))

? (all (olivedrab dodgerblue indigo plum teal darkorange))

? (2 (olivedrab dodgerblue indigo plum teal darkorange))

? (3 (olivedrab dodgerblue indigo plum teal darkorange))

? (5 (olivedrab dodgerblue indigo plum teal darkorange))

~
]
=

Task 4 - Two Card Poker

This task invites you to programmably explore the hands that are dealt in a game of two card poker. You will start
by merely entering and demoing the card playing code presented in Lesson 6 “Basics Lisp Programming”. You will
then write a classifier for the hands in this game, assuming a uniform representational (ur) scheme (output of cards
will be represented in the primitive internall representation of cards. As a final step, you will arrange for the output

to appear in a more natural fagshion.

Task 4a - Establishing the Card code from Lesson 6

1. Please establish a file called cards.rkt and place the code given within the section titled “Basic List Processing

Example - Playing Cards” of Lesson 6 into the file.

2. Recreate the demo provided in that same part of the lesson.

Task 4b - Two Card Poker Classifier, IR Version

In this part of the assignment you will be lead in a step by step manner to program a two card poker hand classifier.

1.

Please closely consider the the accompanying demo called “UR classifier demo”, from which you should be able
to infer the big picture of what you are expected to do for this part of your assignment.

. Please establish a file called classifier_ur.rkt, copy and paste the code from your “cards.rkt” file into the

newly established file, save it, and run it, by which mean just make sure that the code still works. Note: You
will make use of some, but not all, of the functionality that you copied into this file as you proceed to develop
the classifier program.

Within the classifier file, define a parameterless function called pick-two-cards which returns a list of two
cards from a virgin deck of cards, assuring that the two cards are distinct. One way to do this would be to
call pick-a-card twice, compare the resulting cards, return them in the form of a list if they are different, or
recursively call this function if the should happen to be the same. Please see the accompanying demo called
“Pick two cards demo” for assurance that you understand what this function is all about.

. Recreate the pick two cards demo (except for the fact that your two card results will differ due the to random-

ness).

Within the classifier file, define a function called higher-rank taking two parameters, each one being a card,
which returns the “highest rank” of the cards. There are lots of ways to do this. Pick one! Please see the ac-
companying demo called “Higher rank demo” for assurance that you understand what this function is all about.

Recreate the accompanying higher rank demo. Note: In order to do this you will need add a couple of extra
lines of code to your file. Please add (require racket/trace) just after the language specification state-
ment. Please add (trace higher-rank) at the end of the file. Do the demo. After you copy the demo,
“comment out” the trace form at the end of the file.

. Within the classifier file, define a function called classify-two-cards-ur taking one parameter, a list of two

lists, each representing one card, which displays the two cards, followed by a colon, followed by the appropriate
classification of the two cards. Note that there are five basic ways to classify two cards: as a pair, as a straight
flush, as a straight, as a flush, and as a mere high card. The syntax of the classification expressions can be found
in the demo. Please adhere to it, noting that the maximal rank of the pair leads off each classification expres-
sion. Please, once again, refer to the accompanying demo called “Higher rank demo” for details and clarification.

Please “recreate” the accompanying uniform representation classifier demo, subject to the fact that randomness
will cause different pairs of cards to appear throughout the demo. That is, generate a demo which calls this
function 20 times.

UR classifier demo

> (
(Q
> (
@
> (

(Q
> (

classify-two-cards-ur (pick-two-cards))
D) (4 C)): J high

classify-two-cards-ur (pick-two-cards))
C) (X 8)): Q high

classify-two-cards-ur (pick-two-cards))
H) (J S)): Q high straight
classify-two-cards-ur (pick-two-cards))

H) (8 D)): A high
classify-two-cards-ur (pick-two-cards
H) (6 H)): 9 high flush
classify-two-cards-ur (pick-two-cards
S) (7 S)): 8 high straight flush
classify-two-cards-ur (pick-two-cards
H) (X H)): X high flush
classify-two-cards-ur (pick-two-cards
H) (9 8)): A high
classify-two-cards-ur (pick-two-cards
S) (9 D)): J high
classify-two-cards-ur (pick-two-cards
C) (3H): 5 high
classify-two-cards-ur (pick-two-cards
H) (X 8)): K high
classify-two-cards-ur (pick-two-cards
H) (8 D)): 9 high straight
classify-two-cards-ur (pick-two-cards
S) (6 H)): 5 high
classify-two-cards-ur (pick-two-cards
C) (A H)): A high straight
classify-two-cards-ur (pick-two-cards
H) (A H)): A high flush
classify-two-cards-ur (pick-two-cards
H) (2 H)): 3 high straight flush
classify-two-cards-ur (pick-two-cards
S) (5D)): 9 high
classify-two-cards-ur (pick-two-cards
D) (J H)): J high
classify-two-cards-ur (pick-two-cards
D) (3 D)): 4 high straight flush

Pick two cards demo

> (

pick-two-cards)

>((9 D) (X 8))

> (

pick-two-cards)

»((J 8) (A W)

> (

pick-two-cards)

»((X D) (K B))

> (

pick-two-cards)

»((X € (3 D))

> (

pick-two-cards)

>((9 D) (J8))

>

Higher rank demo

> (higher-rank (pick-a-card) (pick-a-card))
>(higher-rank (56 C) ’(A D))

<’A
’A

> (higher-rank (pick-a-card) (pick-a-card))
>(higher-rank ’(6 D) ’(8 H))

<8
8

> (higher-rank (pick-a-card) (pick-a-card))
>(higher-rank ’(4 S) ’(5 D))

<5
5

> (higher-rank (pick-a-card) (pick-a-card))
>(higher-rank ’(8 H) ’(A H))

<’A
’A

> (higher-rank (pick-a-card) (pick-a-card))
>(higher-rank ’(J H) ’(X 8))

<’J
’J
>

Task 4c - Two Card Poker Classifier

In this part of the assignment you are asked to change the classifier so that the output is a bit more natural.

1.

Please closely consider the the accompanying demo called “Classifier demo”, from which you should be able to
infer the big picture of what you are expected to do for this part of your assignment.

Please establish a file called classifier.rkt, copy and paste the code from your classifier_ur.rkt file into
the newly established file, save it, and run it, by which I mean just make sure that the code still works.

Within the newly created classifier file, define a function called classify-two-cards taking one parameter,
a list of two lists, each representing one card, which displays the two cards, followed by a colon, followed by
the more natural classification of the two cards. The method of classification is the same as before. The only
difference is that the output will appear a bit more natural. The syntax of the more natural classification
expressions can be found in the demo. Please adhere to it. Note: You can make a mess of this, or you can do
it in a fairly clean manner. Please strive for the latter!

Please “recreate” the accompanying classifier demo, with the more expressive representation of the classifica-
tions. That is, generate a demo which calls this function 20 times.

Classifier demo

> (classify-two-cards (pick-two-cards))
((4 D) (J 8)): jack high
> (classify-two-cards (pick-two-cards))
((@ H) (8 C)): queen high
> (classify-two-cards (pick-two-cards))
((2 H) (8 C)): eight high

classify-two-cards (pick-two-cards))
H) (2 C)): eight high
classify-two-cards (pick-two-cards))
C) (6 C)): six high flush
classify-two-cards (pick-two-cards))
C) (K €)): king high flush
classify-two-cards (pick-two-cards))
S) (3 8)): five high flush
classify-two-cards (pick-two-cards))
D) (56 8)): ten high
classify-two-cards (pick-two-cards))
C) (8 C)): eight high flush
classify-two-cards (pick-two-cards))
H) (2 D)): six high
classify-two-cards (pick-two-cards))
D) (3 8)): queen high
classify-two-cards (pick-two-cards))
S) (9 H)): nine high
classify-two-cards (pick-two-cards))
C) (9 8)): jack high
classify-two-cards (pick-two-cards))
S) (6 C)): king high
classify-two-cards (pick-two-cards))
C) (Q H)): queen high straight
classify-two-cards (pick-two-cards))
S) (X S)): ten high flush
classify-two-cards (pick-two-cards))
C) (X 8)): ten high
classify-two-cards (pick-two-cards))
S) (2 D)): seven high
classify-two-cards (pick-two-cards))
S) (7 S)): seven high straight flush

Additional Notes on your Solution Document

Craft a nicely structured solution document that contains:

1.
2.

A nice title, indicating that this is your second Racket assignment.
A nice learning abstract, which foreshadows the tasks that you are asked to complete in this assignment.

A section for Task 1, the task involving lambda functions, which contains subsections for each of the three
required demos.

A section for Task 2, the task involving the referencers and constructors, which contains the demo.

5. A section for Task 3, the task involving the color thing, which contains two main subsections, one for the

sampler code and demo, and one for the color thing interpreter code and the two required demos.

A section for Task 4, the task involving the two card poker hand classifier, which contains three main sub-
sections. The first will contain code and demo for the “cards” program. The second will contain code and
three demos for the “ur classifier” program. The third will contain code and demo for the “classifier” program.

Then post your document, in pdf format, to you web work site.

Due Date

Friday, March 7, 2022.

