
Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Learning Abstract:
This assignment is made up nine tasks which involve a mixture of using premade code in addition to

deducing my own predicates to solve the classic Towers of Hanoi problem but in a Prolog context. In

addition to this, this assignment is intended to further develop a conceptual understanding of state

space problem solving. The demos included are for the 3- and 4-disc part of the problem. An interesting

worthwhile side artifact is that when I attempted to run the problem as a 5-disc problem the program

was not able to finitely define a solution. This is likely due in part to the fact that program is performing

a blind search in which adding an additional disk yield in exponentially longer compute times with each

addition of a disc. Different search methodologies could solve this problem .

Task 1:
Contemplate the nature of the problem, see specification on web page for details.

Task 2:
Copy and paste source code and check to ensure validity and that it initially compiles, see specification

on web page for details, full code posted later this document.

Task 3: One Move Predicate and a Unit Test

m12([Tower1Before,Tower2Before,Tower3],[Tower1After,Tower2After,Tower3]) :-

 Tower1Before = [H|T],

 Tower1After = T,

 Tower2Before = L,

 Tower2After = [H|L].

test__m12 :-

 write('Testing: move_m12\n'),

 TowersBefore = [[t,s,m,l,h],[],[]],

 trace('','TowersBefore',TowersBefore),

 m12(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Task 4: The Remaining Five Move Predicates and a Unit Tests

m12([Tower1Before,Tower2Before,Tower3],[Tower1After,Tower2After,Tower3]) :-

 Tower1Before = [H|T],

 Tower1After = T,

 Tower2Before = L,

 Tower2After = [H|L].

m13([Tower1Before,Tower2,Tower3Before],[Tower1After,Tower2,Tower3After]) :-

 Tower1Before = [H|T],

 Tower1After = T,

 Tower3Before = L,

 Tower3After = [H|L].

m21([Tower1Before,Tower2Before,Tower3],[Tower1After,Tower2After,Tower3]) :-

 Tower2Before = [H|T],

 Tower2After = T,

 Tower1Before = L,

 Tower1After = [H|L].

m23([Tower1,Tower2Before,Tower3Before],[Tower1,Tower2After,Tower3After]) :-

 Tower2Before = [H|T],

 Tower2After = T,

 Tower3Before = L,

 Tower3After = [H|L].

m31([Tower1Before,Tower2,Tower3Before],[Tower1After,Tower2,Tower3After]) :-

 Tower3Before = [H|T],

 Tower3After = T,

 Tower1Before = L,

 Tower1After = [H|L].

m32([Tower1,Tower2Before,Tower3Before],[Tower1,Tower2After,Tower3After]) :-

 Tower3Before = [H|T],

 Tower3After = T,

 Tower2Before = L,

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

 Tower2After = [H|L].

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

% --- Unit test programs

test__m12 :-

 write('Testing: move_m12\n'),

 TowersBefore = [[t,s,m,l,h],[],[]],

 trace('','TowersBefore',TowersBefore),

 m12(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m13 :-

 write('Testing: move_m13\n'),

 TowersBefore = [[t,s,m,l,h],[],[]],

 trace('','TowersBefore',TowersBefore),

 m13(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m21 :-

 write('Testing: move_m21\n'),

 TowersBefore = [[],[t,s,m,l,h],[]],

 trace('','TowersBefore',TowersBefore),

 m21(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m23 :-

 write('Testing: move_m23\n'),

 TowersBefore = [[],[t,s,m,l,h],[]],

 trace('','TowersBefore',TowersBefore),

 m23(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m31 :-

 write('Testing: move_m31\n'),

 TowersBefore = [[],[],[t,s,m,l,h]],

 trace('','TowersBefore',TowersBefore),

 m31(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m32 :-

 write('Testing: move_m32\n'),

 TowersBefore = [[],[],[t,s,m,l,h]],

 trace('','TowersBefore',TowersBefore),

 m32(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Task 5: Valid State Predicate and Unit Test

% ---

% --- valid_state(S) :: S is a valid state

valid_state([A|[B|[C]]]) :- towerState(A), towerState(B), towerState(C).

towerState([]).

towerState([s]).

towerState([s,m]).

towerState([s,m,l]).

towerState([s,l]).

towerState([s,l,h]).

towerState([s,h]).

towerState([s,m,h]).

towerState([m]).

towerState([m,l]).

towerState([m,l,h]).

towerState([m,h]).

towerState([m]).

towerState([m,l]).

towerState([m,l,h]).

towerState([m,h]).

towerState([l]).

towerState([l,h]).

towerState([h]).

towerState([s,m,l,h]).

towerState([t]).

towerState([t,s]).

towerState([t,s,m]).

towerState([t,s,m,l]).

towerState([t,s,l]).

towerState([t,s,l,h]).

towerState([t,s,h]).

towerState([t,s,m,h]).

towerState([t,m]).

towerState([t,m,l]).

towerState([t,m,l,h]).

towerState([t,m,h]).

towerState([t,m]).

towerState([t,m,l]).

towerState([t,m,l,h]).

towerState([t,m,h]).

towerState([t,l]).

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

towerState([t,l,h]).

towerState([t,h]).

towerState([t,s,m,l,h]).

%% Unit Test Code

test__valid_state :-

 write('Testing: valid_state\n'),

 test__vs([[l,t,s,m,h],[],[]]),

 test__vs([[t,s,m,l,h],[],[]]),

 test__vs([[],[h,t,s,m],[l]]),

 test__vs([[],[t,s,m,h],[l]]),

 test__vs([[],[h],[l,m,s,t]]),

 test__vs([[],[h],[t,s,m,l]]).

test__vs(S) :-

 valid_state(S),

 write(S), write(' is valid.'), nl.

test__vs(S) :-

 write(S), write(' is invalid.'), nl.

Task 6: Defining the write sequence predicate
%% Write Sequence Doe

write_sequence([]).

write_sequence([H|T]) :-

 elaborate(H,E),

 write(E),nl,

 write_sequence(T).

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

elaborate(m12,Output) :-

 Output = 'Transfer a disk from tower 1 to tower 2.'.

elaborate(m13,Output) :-

 Output = 'Transfer a disk from tower 1 to tower 3.'.

elaborate(m21,Output) :-

 Output = 'Transfer a disk from tower 2 to tower 1.'.

elaborate(m23,Output) :-

 Output = 'Transfer a disk from tower 2 to tower 3.'.

elaborate(m31,Output) :-

 Output = 'Transfer a disk from tower 3 to tower 1.'.

elaborate(m32,Output) :-

 Output = 'Transfer a disk from tower 3 to tower 2.'.

%% Unit Test Code

test__write_sequence :-

 write('First test of write_sequence ...'), nl,

 write_sequence([m31,m12,m13,m21]),

 write('Second test of write_sequence ...'), nl,

 write_sequence([m13,m12,m32,m13,m21,m23,m13]).

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Task 7: Intermediate and Plain English Demo

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Paraphrased English Solution

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Questions and Answers

1. What was the length of your program’s solutions to the three-disk problem?

The length appears to be a degree of 14 steps.

2. What is the length of the shortest solution to the three-disk problem?

Doing it by hand I was able to complete it in 7 steps with three discs.

3. How do you account for the discrepancy?

It appears the program is checking each possible state before executing another transition bringing

into question the computational efficiency of this process.

Task 8:

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

Questions and Answers

1. What was the length of your program’s solutions to the four-disk problem?

The length appears to be a degree of 40 steps.

2. What is the length of the shortest solution to the four-disk problem?

Doing it by hand I was able to complete it in 15 steps with four discs.

Task 9: The Full Code Base

% ---

% ---

% --- File: towers_of_hanoi.pro

% --- Line: Program to solve the Towers of Hanoi problem

% ---

:- consult('inspectors.pro').

% ---

% --- make_move(S,T,SSO) :: Make a move from state S to state T by SSO

make_move(TowersBeforeMove,TowersAfterMove,m12) :-

 m12(TowersBeforeMove,TowersAfterMove).

make_move(TowersBeforeMove,TowersAfterMove,m13) :-

 m13(TowersBeforeMove,TowersAfterMove).

make_move(TowersBeforeMove,TowersAfterMove,m21) :-

 m21(TowersBeforeMove,TowersAfterMove).

make_move(TowersBeforeMove,TowersAfterMove,m23) :-

 m23(TowersBeforeMove,TowersAfterMove).

make_move(TowersBeforeMove,TowersAfterMove,m31) :-

 m31(TowersBeforeMove,TowersAfterMove).

make_move(TowersBeforeMove,TowersAfterMove,m32) :-

 m32(TowersBeforeMove,TowersAfterMove).

m12([Tower1Before,Tower2Before,Tower3],[Tower1After,Tower2After,Tower3]) :-

 Tower1Before = [H|T],

 Tower1After = T,

 Tower2Before = L,

 Tower2After = [H|L].

m13([Tower1Before,Tower2,Tower3Before],[Tower1After,Tower2,Tower3After]) :-

 Tower1Before = [H|T],

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

 Tower1After = T,

 Tower3Before = L,

 Tower3After = [H|L].

m21([Tower1Before,Tower2Before,Tower3],[Tower1After,Tower2After,Tower3]) :-

 Tower2Before = [H|T],

 Tower2After = T,

 Tower1Before = L,

 Tower1After = [H|L].

m23([Tower1,Tower2Before,Tower3Before],[Tower1,Tower2After,Tower3After]) :-

 Tower2Before = [H|T],

 Tower2After = T,

 Tower3Before = L,

 Tower3After = [H|L].

m31([Tower1Before,Tower2,Tower3Before],[Tower1After,Tower2,Tower3After]) :-

 Tower3Before = [H|T],

 Tower3After = T,

 Tower1Before = L,

 Tower1After = [H|L].

m32([Tower1,Tower2Before,Tower3Before],[Tower1,Tower2After,Tower3After]) :-

 Tower3Before = [H|T],

 Tower3After = T,

 Tower2Before = L,

 Tower2After = [H|L].

% ---

% --- valid_state(S) :: S is a valid state

valid_state([A|[B|[C]]]) :- towerState(A), towerState(B), towerState(C).

towerState([]).

towerState([s]).

towerState([s,m]).

towerState([s,m,l]).

towerState([s,l]).

towerState([s,l,h]).

towerState([s,h]).

towerState([s,m,h]).

towerState([m]).

towerState([m,l]).

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

towerState([m,l,h]).

towerState([m,h]).

towerState([m]).

towerState([m,l]).

towerState([m,l,h]).

towerState([m,h]).

towerState([l]).

towerState([l,h]).

towerState([h]).

towerState([s,m,l,h]).

towerState([t]).

towerState([t,s]).

towerState([t,s,m]).

towerState([t,s,m,l]).

towerState([t,s,l]).

towerState([t,s,l,h]).

towerState([t,s,h]).

towerState([t,s,m,h]).

towerState([t,m]).

towerState([t,m,l]).

towerState([t,m,l,h]).

towerState([t,m,h]).

towerState([t,m]).

towerState([t,m,l]).

towerState([t,m,l,h]).

towerState([t,m,h]).

towerState([t,l]).

towerState([t,l,h]).

towerState([t,h]).

towerState([t,s,m,l,h]).

% ---

% --- solve(Start,Solution) :: succeeds if Solution represents a path

% --- from the start state to the goal state.

solve :-

 extend_path([[[s,m,l,h],[],[]]],[],Solution),

 write_solution(Solution).

extend_path(PathSoFar,SolutionSoFar,Solution) :-

 PathSoFar = [[[],[],[s,m,l,h]]|_],

 % showr('PathSoFar',PathSoFar),

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

 % showr('SolutionSoFar',SolutionSoFar),

 Solution = SolutionSoFar.

extend_path(PathSoFar,SolutionSoFar,Solution) :-

 PathSoFar = [CurrentState|_],

 % showr('PathSoFar',PathSoFar),

 make_move(CurrentState,NextState,Move),

 % show('Move',Move),

 % show('NextState',NextState),

 not(member(NextState,PathSoFar)),

 valid_state(NextState),

 Path = [NextState|PathSoFar],

 Soln = [Move|SolutionSoFar],

 extend_path(Path,Soln,Solution).

% ---

% --- write_sequence_reversed(S) :: Write the sequence, given by S,

% --- expanding the tokens into meaningful strings.

write_solution(S) :-

 nl, write('Solution ...'), nl, nl,

 reverse(S,R),

 write_sequence(R),nl.

write_sequence([]).

write_sequence([H|T]) :-

 elaborate(H,E),

 write(E),nl,

 write_sequence(T).

elaborate(m12,Output) :-

 Output = 'Transfer a disk from tower 1 to tower 2.'.

elaborate(m13,Output) :-

 Output = 'Transfer a disk from tower 1 to tower 3.'.

elaborate(m21,Output) :-

 Output = 'Transfer a disk from tower 2 to tower 1.'.

elaborate(m23,Output) :-

 Output = 'Transfer a disk from tower 2 to tower 3.'.

elaborate(m31,Output) :-

 Output = 'Transfer a disk from tower 3 to tower 1.'.

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

elaborate(m32,Output) :-

 Output = 'Transfer a disk from tower 3 to tower 2.'.

% ---

% --- Unit test programs

test__m12 :-

 write('Testing: move_m12\n'),

 TowersBefore = [[t,s,m,l,h],[],[]],

 trace('','TowersBefore',TowersBefore),

 m12(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m12x :-

 write('Testing: move_m12\n'),

 TowersBefore = [[s,m,l,h],[],[t]],

 trace('','TowersBefore',TowersBefore),

 m12(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m13 :-

 write('Testing: move_m13\n'),

 TowersBefore = [[t,s,m,l,h],[],[]],

 trace('','TowersBefore',TowersBefore),

 m13(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m13x :-

 write('Testing: move_m13\n'),

 TowersBefore = [[s,m,l,h],[],[t]],

 trace('','TowersBefore',TowersBefore),

 m13(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m21 :-

 write('Testing: move_m21\n'),

 TowersBefore = [[],[t,s,m,l,h],[]],

 trace('','TowersBefore',TowersBefore),

 m21(TowersBefore,TowersAfter),

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

 trace('','TowersAfter',TowersAfter).

test__m23 :-

 write('Testing: move_m23\n'),

 TowersBefore = [[],[t,s,m,l,h],[]],

 trace('','TowersBefore',TowersBefore),

 m23(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m31 :-

 write('Testing: move_m31\n'),

 TowersBefore = [[],[],[t,s,m,l,h]],

 trace('','TowersBefore',TowersBefore),

 m31(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__m32 :-

 write('Testing: move_m32\n'),

 TowersBefore = [[],[],[t,s,m,l,h]],

 trace('','TowersBefore',TowersBefore),

 m32(TowersBefore,TowersAfter),

 trace('','TowersAfter',TowersAfter).

test__valid_state :-

 write('Testing: valid_state\n'),

 test__vs([[l,t,s,m,h],[],[]]),

 test__vs([[t,s,m,l,h],[],[]]),

 test__vs([[],[h,t,s,m],[l]]),

 test__vs([[],[t,s,m,h],[l]]),

 test__vs([[],[h],[l,m,s,t]]),

 test__vs([[],[h],[t,s,m,l]]).

test__vs(S) :-

 valid_state(S),

 write(S), write(' is valid.'), nl.

test__vs(S) :-

 write(S), write(' is invalid.'), nl.

test__write_sequence :-

 write('First test of write_sequence ...'), nl,

 write_sequence([m31,m12,m13,m21]),

 write('Second test of write_sequence ...'), nl,

Nathaniel Wolf
Prolog Programming Assignment #2: State Space Problem Solving

4/19/2022
CSC 344

 write_sequence([m13,m12,m32,m13,m21,m23,m13]).

