Nathaniel Wolf — CSC 344
Problem Set 1 - BNF

Learning Abstract

The purpose of this assignment is to gain an understanding of how to reduce a programming
language to Backus-Naur Form (which will be referred to as BNF moving forward), diagram
parse trees for said language, and then describe concisely what BNF is.

Task 1: RB4B
Qi1

<f-string> ::= <s-string><e-string>

<5—5tring} se>¢-string>

(.-.) |

<e-string>

{empty5

<ca

<case> ::= (=) | (-=) | (--) | (..-)
+) |
= () | (-9

Css
2ty >
o

Task 2: <QNS>

Q1
::= <sn> | <gns>
::= 0 || <qns>
::= <nZero> | <nOne> | <nTwo> | <nThree>
<nZero> ::= @ <nOne> | @ <nTwo> | @ <nThree> | @ <empty>

<nOne> ::= 1 <nZero> | 1 <nTwo> | @ <nThree> | 1 <empty>
<nTwo> :: <nZero> | 2 <nOne> | 2 <nTwo> | 2 <empty>
<nThree> ::= 3 <nZero> | 3 <nOne> | 3 <nTwo> | 3 <empty>

Q4
The grammar as defined does not allow for the repetition of digits in a manner that would allow you to
have a string of 1223, after the first token of 2 you would have a non-terminal that directs you to choose

0 1 or three.

Task 3:IR123
Q1

<IR123> ::= [C] <NsC> | [DC] <NsDC>

| [EDC] <NsEDC> | [FEC] <NsFEC>»

<NsC> ::= [DC] <NsDC> | [BC] <NsBC>

| [FEC] <NsFEC> | [GFC] <NsGFC>

[BC] <NsBC>
[GFC] <NsGFC>
[EDC] <NsEDC>
<empty>

<NsDC> ::= [C] <NsC> | [BC] <NsBC> | [EDC] <NsEDC>
| [FEC] <NsFEC> | [GFC] <NsGFC> | <empty>
<NsBC> ::= [C] <NsC> | [DC] <NsDC> | [EDC] <NsEDC>

| [FEC] <NsFEC> | [GFC] <NsGFC>
<NsSEDC> ::= [C] <NsC> | [DC] <NsDC>
| [FEC] <NsFEC> | [GFC] <NsGFC>
<NsSFEC> ::= [C] <NsC> | [DC] <NsDC>
| [EDC] <NsEDC> | [GFC] <NsGFC>
<NsGFC> ::= [C] <NsC> | [DC] <NsDC>
| [EDC] <NsEDC> | [FEC] <NsFEC>

<empty>
[BC] <NsBC>
<empty:>
[BC] <NsBC>
<empty>
[BC] <NsBC>»
<empty>

N<EDC
N, EEC >
CHEC S

CLerpisD

Q4
The strings [BC][BC] are repeated is sequence. Per the BNF grammar for this language you cannot have
repeating strings after a non-terminal. After BC you have to a select a NsBC token next.

Task 3
Q1 BXR
BXR> ::= <expr> | <const>
BXR-1> ::= <BXR> | <empty>
expr> ::= <or> | <and> | <not>
and> ::= (and <BXR> <BXR-1)
or> ::= (or <BXE> <BXR-1)
not> ::= (not <const> | not <expr>)
const> ::= #t | #f

Task 5: Color Fun
Q1
color-fun> ::= <add> | <show> | <desc> | <colors> | <exit>
add-color> ::= add <RGB> color-name
RGB>» ::= «<B...255><8...255><0. .255}|<EI. ..255><8. . 2F
show>» ::= show color-name
desc> ::= describe color-name

colors> ::= <color-1> | <empty>

colors-1> ::= color-name | <colors-1> | <empty>
exit> ::= /terminates program

Task 6: Explain BNF Form in your own words

Backus-Naur Form (BNF) is a mechanism that we use to describe a programming languages
meta syntax and how the language essentially works on a basic level. Using BNF we can strip
away as many high and low order functions of a particular language to determine how things
like variables, statements, expressions (assuming any of those exist to said language, they don’t
necessarily have to ascribe to having a particular concept to be considered a programming
language). In theory what remains of this stripping would be a grammar language
corresponding with the general principles of putting a language in BNF.

